Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nat Commun ; 13(1): 4399, 2022 08 05.
Article in English | MEDLINE | ID: covidwho-2042318

ABSTRACT

The coronavirus membrane protein (M) is the most abundant viral structural protein and plays a central role in virus assembly and morphogenesis. However, the process of M protein-driven virus assembly are largely unknown. Here, we report the cryo-electron microscopy structure of the SARS-CoV-2 M protein in two different conformations. M protein forms a mushroom-shaped dimer, composed of two transmembrane domain-swapped three-helix bundles and two intravirion domains. M protein further assembles into higher-order oligomers. A highly conserved hinge region is key for conformational changes. The M protein dimer is unexpectedly similar to SARS-CoV-2 ORF3a, a viral ion channel. Moreover, the interaction analyses of M protein with nucleocapsid protein (N) and RNA suggest that the M protein mediates the concerted recruitment of these components through the positively charged intravirion domain. Our data shed light on the M protein-driven virus assembly mechanism and provide a structural basis for therapeutic intervention targeting M protein.


Subject(s)
COVID-19 , SARS-CoV-2 , Cryoelectron Microscopy , Humans , Membrane Proteins , Virus Assembly
2.
FASEB J ; 36(8): e22481, 2022 08.
Article in English | MEDLINE | ID: covidwho-2018110

ABSTRACT

Sedatives/anesthetics are important medical tools to facilitate medical care and increase patients' comfort. Increasingly, there is recognition that sedatives/anesthetics can modulate immune functions. Toll-like receptors (TLRs) are major pattern recognition receptors involved in the recognition of microbial components. TLR7 recognizes single-strand RNA virus such as influenza and SARS-CoV2 viruses and initiates interferon (IFN) responses. IFN production triggered by TLR7 stimulation is a critical anti-viral response. For example, patients with TLR7 variants including loss-of- function variants were associated with severe COVID-19. Taken together, it is important to determine if sedatives/anesthetics mitigate TLR7 function. We have previously showed that TLR7-mediated activation was not affected by volatile anesthetics. However, we found that propofol attenuated TLR7 activation among intravenous sedatives in the reporter assay. TLR7 agonist R837 stimulation increased TNF-α, IL-1ß, IL-6, IL-10, and IFN-ß mRNA levels in bone marrow-derived dendritic cells, while these levels were attenuated by propofol. Our murine lung slice experiments showed that propofol attenuated IFN production. R837 increased IFN-ß expression in the lungs, and propofol attenuated IFN-ß expression in an in vivo model of R837 intranasal instillation. We also found that propofol directly bound to and hindered its association of TLR7 with MyD88. Our analysis using fropofol, propofol derivative showed that the hydroxyl group in propofol was important for propofol-TLR7 interaction.


Subject(s)
COVID-19 , Propofol , Animals , Dendritic Cells , Humans , Hypnotics and Sedatives/pharmacology , Imiquimod , Interferon-alpha/metabolism , Interferon-beta/metabolism , Mice , Propofol/analogs & derivatives , Propofol/pharmacology , RNA, Viral/metabolism , SARS-CoV-2 , Toll-Like Receptor 7
SELECTION OF CITATIONS
SEARCH DETAIL